# SUMMARY REPORT

# ENVIRONMENTAL & NUTRITIONAL IMPACT OF BEEF-LENTIL BLENDED BURGERS

ALL & REALTS

### ABHISHEK CHAUDHARY

Indian Institute of Technology (IIT) Kanpur, Kanpur, India

DENIS TREMORIN Pulse Canada, Winnipeg, Canada







### **STUDY BACKGROUND**

Numerous studies have shown that replacing a portion of beef with plant-based foods in daily diets can improve health, nutrition and environmental impacts (Willett et al. 2019; Chaudhary & Krishna, 2019; Clune et al. 2018).

Lentils are plant-based foods that have both environmental and nutritional benefits. The capacity of lentils to fix atmospheric nitrogen during their cultivation results in reduced nitrogen fertilizer requirement in crop production systems (Clune et al. 2017). Lentils also do not require irrigation and are well suited to semi-arid, water scarce regions (Angadi et al. 2008), and incorporating lentils into crop rotations can improve soils, yield and protein content of the following crop (MacWilliam et al. 2018; Lupwayi et al. 2007). Finally, lentils contain high amounts of protein, fiber, essential vitamins and minerals.

Beef-based burger patties can be made more sustainable, nutritious and cost-effective, while maintaining palatability, by reformulating with a portion of pulses such as whole cooked lentils. However, the nutritional and environmental benefits of lentil-reformulated beef burgers have not been quantified. This study compared the nutritional impact, environmental footprints (carbon, water and land use) and cost of lean U.S. beef burgers compared to lean U.S. beef burgers reformulated with 33% cooked lentil puree.

# METHODOLOGY

The study utilized production and environmental data representing U.S. beef production (Rotz et al. 2019) and data representing the lentil production region of Saskatchewan, Canada. A life cycle assessment (LCA) was conducted to assess the environmental impact of reformulating beef burgers to substitute 33% of the beef with cooked lentil puree.

| Raw Ingredients in Burgers (1 serving = 4 oz/115 grams) |                    |                         |       |      |                 |  |  |
|---------------------------------------------------------|--------------------|-------------------------|-------|------|-----------------|--|--|
| Patty Type                                              | Raw Ground<br>Beef | Whole Cooked<br>Lentils | Water | Salt | Black<br>Pepper |  |  |
| Lean Beef Burger                                        | 113.8 g            |                         |       | 1 g  | 0.2 g           |  |  |
| Lean Beef Burger<br>with Lentil Puree                   | 75.8 g             | 30.4 g                  | 7.5 g | 1 g  | 0.2 g           |  |  |

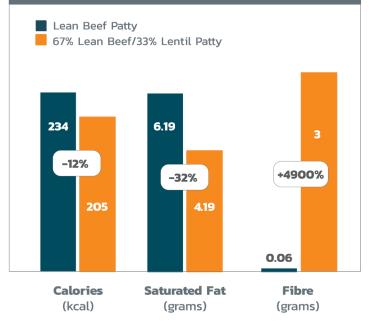
#### Nutritional Profile\* of Ingredients and Burgers

|                                               | Calories<br>(kcal) | Saturated<br>Fat (g) | Total Fat<br>(g) | Cholesterol<br>(mg) | Protein<br>(g) | Fibre<br>(g) |
|-----------------------------------------------|--------------------|----------------------|------------------|---------------------|----------------|--------------|
| Lean Ground Beef<br>(100 g)                   | 207                | 5.4                  | 13.7             | 60                  | 19.58          | 9.7          |
| Cooked Lentils<br>(100 g)                     | 156                | 0.15                 | 0.55             | 0                   | 12.82          | 0            |
| Lean Beef Burger<br>(115 g)                   | 234                | 6.19                 | 15.5             | 68                  | 22.19          | 0.06         |
| Lean Beef Burger<br>with Lentil Puree (115 g) | 205                | 4.19                 | 10.6             | 46                  | 18.77          | 3            |

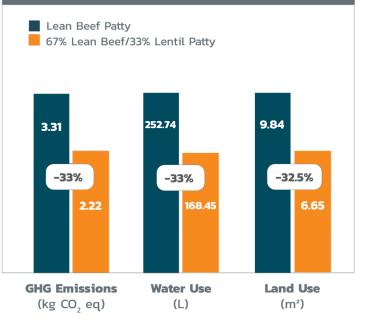
#### Sustainability Profile\* of Ingredients and Burgers

| Ingredient                                       | Greenhouse Gas<br>Emissions (kg CO <sub>2</sub> eq) | Blue (Irrigation)<br>Water Use (L) | Land Use (m <sup>2</sup> ) |
|--------------------------------------------------|-----------------------------------------------------|------------------------------------|----------------------------|
| Dry Lentils<br>at Farm (1 kg)                    | -0.12                                               | 0.67                               | 6.67                       |
| Lentils, Cooked (1 kg)                           | 0.28                                                | 0.29                               | 2.87                       |
| U.S. Boneless Beef<br>at Packers End Gate (1 kg) | 29.1                                                | 2220.9                             | 86.5                       |
| Lean Beef Burger (115 g)                         | 3.31                                                | 252.74                             | 9.84                       |
| Lean Beef Burger with<br>Lentil Puree (115 g)    | 2.22                                                | 168.45                             | 6.65                       |

\*See references for data sources and assumptions used


# RESULTS

### **NUTRITION & COST**


Nutritional data shows that partial replacement of lean ground beef with 33% cooked lentil puree results in a burger patty with 12% less calories, 32% less saturated fat, total fat and cholesterol per serving. The blended lean beef/lentil burger patty also contains 3 grams of fiber serving (compared to 0 grams in lean burger patty). Reformulation with lentil puree resulted in a 15% decrease in protein content.

At the time of the study (2020), there was also a cost savings of 26% achieved with the blended beef/lentil burger.

#### **Nutritional Profile (Per Serving)**



#### **Environmental Outcomes (Per Serving)**



### CONCLUSION

The results of this study demonstrate that reformulating burgers with whole cooked lentils is a strategy that can make a substantial impact on the nutritional profile and environmental impact of burgers, meeting emerging consumer interests while maintaining the familiarity of a traditional product.

#### **SUSTAINABILITY**

The carbon footprint, water footprint and land use footprint of the blended beef/lentil burger were all substantially lowered with 33%, 33% and 32.5%, respectively, reductions when compared to the regular 100% beef burgers.



## **ASSUMPTIONS AND DATA SOURCES**

#### Sustainability Data

| Product                                                                    | Assumptions/Source for<br>Greenhouse Gas Emissions                                                                                                                                                         | Assumptions/Source for Blue<br>water use                                                                                                                                                                                  | Assumptions/Source for<br>Land Use Footprint                                                                                                                              | Source link                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry lentils, at farm (1 kg)                                                | Canadian Roundtable for Sustainable<br>Crops, Carbon Footprint for Canadian<br>Lentils, 2017                                                                                                               | Blue water footprint of lentils from Fig. 7<br>of Ding et al. (2018), % irrigation required<br>= 24% of total water demand of lentils,<br>full calculation of water footprint on<br>'Lentils – water footprint' worksheet | Yield is weighted average of 18 census<br>divisions)                                                                                                                      | GHG: Pulse Canada has copy of report;<br>Water footprint: https://www.mdpi.com/2073-<br>4441/10/11/1609;<br>Land use footprint: http://publications.<br>saskatchewan.ca/#/products/89979                                                                                                                                              |
| Lentils, cooked (1kg)                                                      | 1 kg of dry lentils provide 2.326 kg of<br>cooked lentils. Cooking stage gas use<br>from Dettling et al. 2016. See Appendix<br>M of report on Morningstar Farms<br>website for cooking footprint of pulses | 1 kg of dry lentils provide 2.326 kg of<br>cooked lentils.                                                                                                                                                                | 1 kg of dry lentils provide 2.326 kg of<br>cooked lentils.                                                                                                                | Pulse Canada; 33. Dettling, J., Tu, Q., Faist,<br>M., DelDuce, A. and Mandlebaum, S., 2016. A<br>comparative life cycle assessment of plant-<br>based foods and meat foods. Quantis USA:<br>Boston, MA, USA;<br>https://www.morningstarfarms.com/content/<br>dam/morningstarfarms/pdf/MSFPlantBased<br>LCAReport_2016-04-10_Final.pdf |
| US boneless beef at packers end<br>gate (1 kg)                             | Table 4 of Rotz et al. (2019)<br>Agricultural Systems (23.3 kgCO2eq.<br>till carcass weight and then 5.8 kg<br>added from carcass to retail gate<br>just like NBSA report does for<br>Canada)              | Table 5 of Rotz et al. (2019)<br>Agricultural Systems (bluewater till<br>carcass weight is<br>2095 Litres and then we add 125.9<br>litres from carcass to retail stage just<br>like in NBSA Canadian report               | Land use of US beef from Nijdam et<br>al. 2012                                                                                                                            | https://www.sciencedirect.com/science/<br>article/pii/S0308521X18305675#s0085;<br>https://www.sciencedirect.com/science/<br>article/abs/pii/S0306919212000942                                                                                                                                                                         |
| One serving of regular ground<br>beef burger (US beef)                     | Calculation using regular burger<br>formulation shown in worksheet<br>'Burger formulations',<br>calculation does not include salt and<br>pepper footprints                                                 | Calculation using regular burger<br>formulation shown in worksheet 'Burger<br>formulations', calculation does not<br>include salt and pepper footprints                                                                   | Calculation using regular burger<br>formulation shown in worksheet<br>'Burger formulations',<br>calculation does not include salt and<br>pepper footprints                |                                                                                                                                                                                                                                                                                                                                       |
| One serving of regular ground<br>beef burger with lentil puree (U<br>beef) | Calculation using beef burger with<br>lentil puree formulation shown in<br>worksheet 'Burger formulations',<br>calculation does not include salt and<br>pepper footprints                                  | Calculation using beef burger with<br>lentil puree formulation shown in<br>worksheet 'Burger formulations',<br>calculation does not include salt and<br>pepper footprints                                                 | Calculation using beef burger with<br>lentil puree formulation shown in<br>worksheet 'Burger formulations',<br>calculation does not include salt and<br>pepper footprints |                                                                                                                                                                                                                                                                                                                                       |

| Saskatchewan           | Lentil production                                                             | Lentil acres | Yield         | Irrigated/ | Bluewater footprint | Production x Bluewater |
|------------------------|-------------------------------------------------------------------------------|--------------|---------------|------------|---------------------|------------------------|
| <b>Census Division</b> | (tonnes)                                                                      | (harvested)  | (tonnes/acre) | Rain-fed   | (litres/kg)         | footprint              |
| 2                      | 164200                                                                        | 383800       | 0.43          | Rain fed   | 0                   | 0                      |
| 3                      | 233400                                                                        | 475500       | 0.49          | Rain fed   | 0                   | 0                      |
| 4                      | 140800                                                                        | 326200       | 0.43          | Rain fed   | 0                   | 0                      |
| 6                      | 222500                                                                        | 369800       | 0.6           | Rain fed   | 0                   | 0                      |
| 7                      | 352485                                                                        | 600814       | 0.59          | Rain fed   | 0                   | 0                      |
| 7                      | 2515                                                                          | 4286         | 0.59          | Irrigated  | 398                 | 1000790                |
| 8                      | 505800                                                                        | 813800       | 0.62          | Rain fed   | 0                   | 0                      |
| 11                     | 169590                                                                        | 246938       | 0.69          | Rain fed   | 0                   | 0                      |
| 11                     | 1210                                                                          | 1762         | 0.69          | Irrigated  | 398                 | 481507                 |
| 12                     | 220300                                                                        | 285700       | 0.77          | Rain fed   | 0                   | 0                      |
| 13                     | 198900                                                                        | 273700       | 0.73          | Rain fed   | 0                   | 0                      |
|                        | <u>Σ</u> = 2211700                                                            |              |               |            |                     | <u>Σ</u> = 1482297     |
|                        | Weighted average Bluewater footprint for dry Saskatchewan lentils (liters/kg) |              |               |            |                     |                        |

\*Non-irrigated lentil production data taken from crop production statistics of Saskatchewan government:

https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/market-and-trade-statistics/

crops-statistics/crop-district-production
\*\*Irrigated lentils production data from irrigation survey conducted by Irrigation Crop Divesification Corporation: https://irrigationsaskatchewan.com/icdc/irrigation-cropsurvey).

#### Cost Analysis (as of March 27, 2020)

| Ingredient<br>Name  | Quantity       | Weight (g) | \$USD/kg | Cost of<br>Ingredient | Cost per kg | Cost per<br>serving |
|---------------------|----------------|------------|----------|-----------------------|-------------|---------------------|
| Lean Ground<br>Beef | 1 lb           | 454.0      | \$5.79   | \$2.63                |             |                     |
| Kosher Salt         | 1 tsp (5 mL)   | 1.4        | n/a      |                       |             |                     |
| Black Pepper        | 1/2 tsp (2 mL) | 1.4n/a     |          |                       |             |                     |
| TOTAL               |                |            |          | \$2.63                | \$5.69      | \$0.65              |

#### Beef Burger (1 serving = 4oz/115 g)

#### Beef/Lentil Burger (1 serving = 4 oz/115 g)

| Ingredient<br>Name  | Quantity       | Weight (g) | \$USD/kg | Cost of<br>Ingredient | Cost per kg | Cost per<br>serving |
|---------------------|----------------|------------|----------|-----------------------|-------------|---------------------|
| Lean Ground<br>Beef | 1 lb           | 454.0      | \$5.79   | \$2.63                |             |                     |
| Raw Lentils         |                | 78.2       | \$3.41   | \$0.27                |             |                     |
| Water               |                | 45.0       | n/a      |                       |             |                     |
| Kosher Salt         | 1 tsp (5 mL)   | 1.4        | n/a      |                       |             |                     |
| Black Pepper        | 1/2 tsp (2 mL) | 1.4n/a     |          |                       |             |                     |
| TOTAL               |                |            |          | \$2.89                | \$4.20      | \$0.48              |

### REFERENCES

1. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A. and Jonell, M., 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492.

2. Chaudhary, A. and Krishna, V., 2019. Country-specific sustainable diets using optimization algorithm. Environmental science & technology. 53(13), 7694-7703

3. Clune, S.; Crossin, E.; Verghese, K. 2017. Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140, 766-78

4. Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. 2019. Environmental footprints of beef cattle production in the United States. Agricultural Systems. 169, 1–13.

5. Angadi, S.V.; McConkey, B.G.; Cutforth, H.W.; Miller, P.R.; Ulrich, D.; Selles, F.; Volkmar, K.M.; Entz, M.H.; Brandt, S.A. 2008. Adaptation of alternative pulse and oilseed crops to the semiarid Canadian Prairie: Seed yield and water use efficiency. Canadian Joiurnal of Plant Sciences. 88, 425–438.

6. MacWilliam, S.; Parker, D.; Marinangeli, C.P.; Trémorin, D. 2018. A meta-analysis approach to examining the greenhouse gas implications of including dry peas (Pisum sativum L.) and lentis (Lens culinaris M.) in crop rotations in western Canada. Agricultural Systems. 166, 101–110.

7. Lupwayi, N.Z.; Kennedy, A.C. 2007. Grain Legumes in the Northern Great Plains. Agronomy Journal. 99, 1700–1709.